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ABSTRACT 

 

Windisch, Kyle Allyson. M.S. Purdue University, December 2011. Achieving 
Pharmacologically Relevant IV Alcohol Self-Administration in the Rat. Major Professor: 
Cristine L. Czachowski 
 
 
 

Alcohol consumption produces a complex array of effects that can be divided into two 

types: the explicit pharmacological effects of ethanol (which can be quite separate temporally 

from time of intake) and the more temporally “relevant” effects (primarily olfactory and taste) 

that bridge the time from intake to the onset of the pharmacological effects. Dissociating these 

effects is essential to untangling the neurologic underpinnings of alcohol abuse and 

dependence. Intravenous self-administration of ethanol allows for controlled and precise 

dosing, bypasses first order absorption kinetics allowing for a faster onset of pharmacologic 

effects, and eliminates the confounding “non-pharmacological” effects associated with oral 

consumption. Intravenous self-administration of ethanol has been reliably demonstrated in 

both mouse and human experimental models; however, consistent intravenous self-

administration of pharmacologically relevant levels of ethanol remains elusive in the rat. 

Previous work has demonstrated reliable elevated intravenous ethanol self administration using 

a compound reinforcer of oral sucrose and intravenous ethanol. The present study sought to 

elucidate the role of each component of this reinforcer complex using a multiple schedule 

study design. Male P rats had free access to both food and water during all intravenous self-
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administration sessions and all testing was performed in conjunction with the onset of the dark 

cycle. Once animals achieved stable operant responding on both levers for an orally delivered 

1% sucrose solution (1S) on a FR4 schedule, surgery was conducted to implant an indwelling 

jugular catheter. Animals were habituated to the attachment of infusion apparatus and received 

twice daily sessions for four days to condition each lever to its associated schedule. Animals 

were then trained to respond on a multiple FR4-FR4 schedule composed of alternating 2.5 

minute components. During one component only oral 1S was presented, while in the second 

component a compound reinforcer of oral 1S + IV 20% ethanol was presented (25 

mg/kg/injection). Both levers were extended into the chamber during the session, with the 

active lever/schedule alternating as the session progressed across components. Average 

ethanol intake was 0.47 ± 0.04 g/kg. A significant increase in sucrose only reinforcers and 

sucrose lever error responding was found suggesting that sucrose not ethanol is responsible for 

driving overall responding. The current findings suggest that the existing intravenous ethanol 

self-administration methodology remains aversive in the rat. 
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INTRODUCTION 

 
 
 

Overview of Intravenous Ethanol Administration 

Alcohol is a multifaceted drug with a complex array of effects resulting from 

consumption. The principle effects of alcohol consumption can be divided into the more 

temporally relevant non-pharmacological orosensory effects and the direct pharmacological 

effects of ethanol. Intravenous self-administration provides a method by which these distinct 

effects can be isolated to assess their component properties relevant to the reinforcing effects 

of alcohol. Intravenous ethanol self administration has been successfully implemented in mice 

(Grahame 1997, Grahame 1998, Blokhina 2004), monkeys (Gomez 2003, Karoly 1978, 

Williams 2004), and humans (Zimmermann 2008, Zimmermann 2009). 

 

Benefits of Intravenous Administration of Ethanol 

Intravenous self-administration of ethanol lacks the face validity of the more commonly 

used oral administration route. However, as venous administration of ethanol bypasses 

digestive tract absorption, intravenous ethanol administration allows for more precise control 

of the neural exposure resulting from each reinforcer dose. Because the ethanol is being 

directly administered into the bloodstream, the intravenous route allows for a faster ethanol 

exposure with nearly immediate brain exposure. Additionally, utilization of the intravenous 

route allows for precise standardization of ethanol exposure for each individual reinforcer dose 
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across animals. Overall, intravenous ethanol administration allows for a faster brain exposure 

of ethanol in precisely controlled doses across subjects. 

 

Human and Primate Models Using Intravenous Ethanol Administration 

Intravenous ethanol self administration has been thoroughly demonstrated in both 

human and primate models. Zimmermann et al. (2008) demonstrated that human subjects will 

willingly self administer 6% ethanol intravenous in unit doses that raise arterial blood ethanol 

concentration (aBEC) by 7.5 mg% per infusion across a 2.5 hour infusion session. Subjects 

achieved average maximal aBEC of 76.5 ± 23.6 mg% during each of three sessions. Four of 

the twelve subjects willingly infused ethanol to reach the 100 mg% safety limit with three 

participants repeatedly reaching the safely limit within a single session. Therefore, despite the 

novel intake method, humans have been shown to readily self administer pharmacologically 

relevant doses of ethanol intravenously. 

Monkeys have been shown to acquire and maintain intravenous self administration of 

20% ethanol (Deneau, 1969). Of the five rhesus monkeys studied, four acquired self 

administration for access to 200 mg/kg/injection doses without need of alternate induction 

methods. One animal, however, did not acquire responding for intravenous self administration 

of ethanol at any dose. Maximal intake of these animals was 8.6 g/kg/day with voluntary 

periods of abstinence observed lasting 2 to 4 days through the first 4 months of chronic 

access. As well, limited access studies using monkeys (Karoly, 1978) have demonstrated that 

rhesus monkeys will acquire and maintain operant responding for access to 100 

mg/kg/injection doses of 15% ethanol during a 3-hour daily session. Animals were found to 

respond for access to achieve blood ethanol concentrations (BEC) of 400 mg% then reduce 
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responding to maintain this BEC for the remainder of the operant session. Extending the 

length of the session from 3 to 6 hours resulted in higher overall session intakes but did not 

affect the peak BEC achieved. Overall, these studies demonstrate that both humans and 

nonhuman primates will initiate and maintain responding for access to intravenous ethanol 

across repeated sessions and continually achieve pharmacologically relevant ethanol exposures. 

 

Rodent Models Using Intravenous Ethanol Administration 

Mice have been shown to self administer pharmacologically relevant levels of 

intravenous ethanol at relatively elevated ethanol concentrations (20-60% ethanol). Grahame 

et al. (1997) demonstrated that both C57BL/6J (B6) and DBA/2J (DBA) inbred mice will 

acquire and maintain operant responding for intravenous ethanol. Both B6 and DBA mice 

responded for access to ethanol doses of 60, 75, and 90 mg/kg/injection with average daily 

intakes during 2-hr operant sessions greater than 1.0 g/kg for both B6 and DBA mice. 

Although DBA mice traditionally do not orally consume ethanol to pharmacologically relevant 

levels, with intravenous administration, DBA mice receiving the 60 mg/kg/injection dose had 

higher daily intakes (1.26 g/kg) compared to the normally ‘high’ drinking B6 mice (1.03 g/kg). 

In line with the findings of Grahame et al., Kelley (1997) demonstrated that B6 mice will 

acquire a conditioned place preference for intravenously administered 30% ethanol at a dose 

of 0.82 g/kg. B6 mice were also found to generalize intravenously administrated ethanol to 

ethanol administered via intraperitoneal (IP) injections, demonstrating that intravenous and IP 

ethanol administration have similar interoceptive properties. 

Blokhina et al. (2004) further confirmed that mice will self administer ethanol 

intravenously. During a single 30-minute session, mice operantly responded for access to 
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ethanol doses of 0.75 and 3.75 mg/kg/injection (using an ethanol concentration of 1-4%). 

Ethanol was confirmed to maintain significant self-administration behavior in both DBA and 

Swiss mice with session intake for ethanol of 0.089 and 0.094 g/kg respectively.  Though these 

exposures rather low (and arguably not pharmacologically relevant exposures), the animals 

used in this study had no previous exposure to ethanol and were not trained to operantly 

respond prior to the single 30-minute test session. Overall, mice have been shown to initiate 

and maintain responding for intravenous self administration of ethanol and demonstrate a 

conditioned place preference for intravenously administered ethanol. 

Several significant drawbacks have been noted with intravenous self administration in 

mice. Indwelling catheterization surgeries are relatively arduous with mice and have a 

considerable decrement in catheter longevity compared with other animals (Thomsen 2007). 

In contrast, rat catheterization surgeries are relatively simple and have a longer patency than 

mice (lasting on average 8-14 weeks when properly implanted and maintained). As well, rats 

tend to have more stable responding for intravenous drug administration compared to mice 

(Thomsen 2007). Intravenous self-administration of ethanol in rats allows for examination of 

the neurological role of ethanol using site specific neuro-modulation (via micro-injection of a 

drug into a specific brain region) and electrophysiological recording from various brain regions 

during acquisition of responding for ethanol and protracted pharmacological relevant 

exposure. 

 

Limitations of Past Studies Using Rats 

Intravenous self administration of ethanol in rats was first examined by Smith and Davis 

in 1974 (see Table 1. Previous Rat Studies Using Intravenous Ethanol Self-Administration). 
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Non-food or water deprived ethanol naïve male Holtzman Sprague-Dawley rats were shown 

to acquire lever responding for intravenous ethanol doses of a 0.12 mg/kg/injection during 

12-hour operant sessions. Even though animals were shown to have stable self administration 

of ethanol via the intravenous route of administration, peak ethanol intake was low (0.048 

g/kg over a 12 hour session). Although the researchers were able to achieve stable dosing, 

ethanol intake was extremely low and has limited utility in modeling human alcohol use and 

abuse. As well, similar to intravenous self administration in monkeys, over a quarter of the 

animals used for the study did not acquire responding for intravenous ethanol. 

Following this work, Sinden and Le Magnen (1982) demonstrated that male Wistar rats 

would acquire operant responding for relatively higher doses of intravenous ethanol during 

chronic access. In this study, rats had increasing responding over five days for 0.5 and 1.0 

mg/kg doses of ethanol as compared to a saline control. The 5.0 mg/kg/injection dose, 

however, was not found to be reinforcing and resulted in decreasing responding across 

sessions. Average daily intake for the 1.0 mg/kg/injection dose was 0.0625 g/kg. The majority 

of the responding (74%) occurred during the dark portion of the light/dark cycle in bouts of 

responding (2-3 responses within a 5 minute period). Bout responding never extended beyond 

a series of 6 responses. Although total daily intakes for this study were still low, it showed that 

higher doses of intravenous ethanol are reinforcing in the rat as demonstrated by increasing 

responding across sessions. 

One possible explanation for the low session intakes observed in these studies is the 

dilute infusate used. The use of low ethanol concentrations (i.e. <10% ethanol) resulted in high 

total infusion volumes during each session that may have limited ethanol dosing. To achieve a 

more robust and pharmacologically relevant exposure (e.g. 0.3 g/kg intake), animals receiving 
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the 1.0 mg/kg/injection dose would need to administer 30 ml of infusate (which is an infusion 

volume roughly doubling the blood volume of a 350 g rat). Administration of this large a 

volume would result in significant aversive physiological effect. As observed in this study, it 

appears that the highest session volume rats will self administer is 7 ml. This ceiling effect of 

total infusion volume may have contributed to the sub-pharmacologically relevant ethanol 

exposures observed with this and other studies. That is, the aversive effects that would have 

resulted from such high volumes of saline in the bloodstream would have limited that total 

volume of intravenous ethanol the animals were willing to self-administer.  

As well, although Sinden increased the infusion dose, the infusate concentration was not 

markedly increased (with a 1.5% ethanol concentration used for the highest dose). Higher 

infusion doses were instead achieved by extending the pump duration. Though this non-

manipulation of ethanol concentration had no notable difference in overall dosing observed 

(the animals demonstrated higher daily ethanol intakes compared to Smith et al.), the use of 

such a low concentration of ethanol limits the maximal dose one can administer per infusion 

without having extremely protracted reinforcer administration times. This protracted 

reinforcer administration duration limits the effectiveness of the intravenous administration 

model to achieve faster temporal salience compared to oral administration. In other words, if 

one advantage of the intravenous route of administration is to study fast rising BECs and a 

more discrete reinforcer delivery as compared to drinking ethanol, then use of low 

concentrations cancels out this advantage due to the protracted infusion time required for 

higher doses. Due to the apparent ceiling for total volume and protracted time of 

administration observed with low concentrations of ethanol, examination of the acquisition of 
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operant responding in rats for intravenous ethanol self administration must use higher ethanol 

concentrations. 

To this end, Oei and Singer (1979) examined the influence of food deprivation and 

schedule manipulation on a rat’s ability to acquire operant responding for intravenous self 

administration of ethanol using a higher ethanol concentration (20% ethanol). Animals in three 

treatment conditions [100% body weight, 80% body weight, and 80% body weight plus fixed 

time interval 1 minute (FI1) schedule for food reinforcement] operantly responded during 

daily 1-hour sessions for access to an 8 mg/kg infusion of ethanol. The non-food restricted 

animals did not acquire lever responding for access to intravenous ethanol. However, both 

food restricted groups acquired responding for intravenous ethanol, with the highest stable 

response rates observed in the food restricted group responding under the FI-1 schedule. 

Although food restriction does result in rats acquiring and maintaining responding for 

intravenous ethanol, it does not translate well to human alcohol use. The result observed with 

the non-food deprived group is similar to those of Sinden et al. for the 5 mg/kg/injection 

dose. From this, it appears that unit doses over 1 mg/kg/injection regardless of infusate 

concentrations are unable to initiate and maintain responding in non-deprived rats. 

This apparent ceiling for unit dose does not allow for pharmacologically relevant intake 

of ethanol despite maintained stable responding. A relevant question to this end is do these 

seemingly sub-pharmacological exposures of ethanol have any neurological effect. Lyness and 

Smith (1992) examined the role of dopamine and serotonin on the acquisition and rate of 

operant responding. Male Sprague-Dawley rats were allowed access to 0.5, 1, 2, 4, and 8 

mg/kg/injection doses of intravenous ethanol on a FR1 schedule during 8-hour sessions daily 

(0.5-4% ethanol). Animals acquired operant responding for intravenous ethanol doses of 1, 2, 
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and 4 mg/kg/injection and a substantial increase in responding (frustration) was noted when 

the infusion solution was switched from ethanol to saline. The peak intake observed was 0.075 

g/kg/day. Animals did not acquire responding for either the 0.5 or 8 mg/kg dose. Dopamine 

manipulation via blockade (using haloperidol) or lesions (6-OHDA lesion of nucleus 

accumbens) had no effect on either acquisition or rate of operant responding for intravenous 

ethanol. Interestingly, serotonin blockade via the irreversible tryptophan hydroxylase inhibitor 

p-chlorophenylalanine (PCPA) resulted in a significant increase in operant responding for 

intravenous ethanol while serotonin stimulation via the selective serotonin reuptake inhibitor 

fluoxetine reduced responding. The rate of responding for intravenous ethanol in these 

animals returned to baseline levels within several days of exposure to serotonin treatment. 

Gass and Olive (2007) also found that Wistar rats previously trained to respond for a 1 

mg/kg/injection dose of intravenous ethanol demonstrated reinstatement to seeking for 

intravenous ethanol using cue-, prime-, and stress-induced reinstatement models. From both 

the Lyness and Gass studies it appears that despite the low levels of intake observed, 

intravenous ethanol self administration in rats results discrete neurological effects that can be 

manipulated. 

When intravenous ethanol is the only reinforcer, animals appear to maintain responding 

only at doses below 5 mg/kg/injection resulting in low total session intakes. Several studies 

have examined the role of either experimenter administered ethanol or co-administration of 

ethanol with other compounds in facilitating increased ethanol intakes and operant responding 

for higher doses of intravenous ethanol. DeNoble et al. (1985) examined the effects of co-

administration of intravenous ethanol (1, 3, 10, 30, 60, 90, 180, and 360 mg/kg/injection 

doses) and non-reinforcing doses of pentobarbital on acquisition and rate of operant lever 
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responding on a FR1 during chronic access. As seen previously, rats failed to initiate lever 

responding when ethanol was the only reinforcer for any of the ethanol doses. As well, 

repeated substitutions of ethanol for pentobarbital (pentobarbital doses of 0.5, 1.0, and 2.0 

mg/kg/injection) failed to maintain responding. However, when ethanol was combined with 

non-reinforcing doses of pentobarbital (0.125 and 0.25 mg/kg/injection), responding was 

maintained for ethanol doses of 1, 3, 10, 30, and 60 mg/kg/injection. Total daily intake for 

these animals ranged from 0.45 to 2.7 g/kg. This study demonstrates that elevated intakes are 

possible via intravenous administered ethanol doses above 5 mg/kg/injection when ethanol is 

co-administered with a positive reinforcer. However, these results may be due to a synergistic 

interaction between ethanol and pentobarbital. A different reinforcer complex, such as 

intravenous ethanol plus oral sucrose, is necessary to facilitate further analysis of the effects of 

ethanol using co-administration. 

Numan et al. (1985) demonstrated elevated ethanol intake with intravenous ethanol self 

administration using cycles of forced ethanol to induce dependency. Eleven male Long-Evans 

rats underwent periodic cycles of forced ethanol (30%) administered in 5 hour intervals over 4-

6 days with daily doses of 9-16 g/kg infused. After each cycle the rats were allowed to 

operantly respond for access to a 930 mg/kg/injection dose of ethanol at a 20% ethanol 

concentration. The criterion for stable self administration behavior (SAB) was defined as 

responding resulting in intake of more than 5 g/kg/day of ethanol. Failure to reach SAB 

resulted in rats receiving additional cycles of forced intravenous ethanol. Of the animals used 

in the study, three failed to acquire SAB. For the remaining animals, the average number of 

cycles required to establish SAB was 5.25 (range 3-8). The majority of SAB responding (62%) 

occurred during the dark portion of the light/dark cycle with responding predominantly 
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occurring in bouts. Interestingly, when intravenous ethanol self administration was performed 

using these parameters with naïve rats not exposed to forced ethanol cycling all of the animals 

failed to acquire responding. This suggests that pre-exposure to elevated levels of ethanol 

facilitate the acquisition of operant responding for higher doses and concentrations of 

intravenous ethanol. Alternatively, the intravenous ethanol could be acting as a negative 

reinforcer with the animals avoiding withdrawal symptoms. 

Pre-exposure to seven weeks of intravenous ethanol plus fading doses of cocaine 

facilitated subsequent operant responding to intravenous ethanol alone. In Sprague-Dawley 

rats (Ikegami, 2002) the ethanol plus cocaine fade group demonstrated consistent elevated 

responding for intravenous ethanol alone (with intakes of 0.5-2.0 g/kg during 1-hour operant 

sessions) for all intravenous ethanol doses (62.5, 125, 250, and 500 mg/kg/injection using an 

ethanol infusate concentration of 10%). The cocaine fade only group did not acquire 

subsequent responding for intravenous ethanol following pre-exposure training. Rats in the 

ethanol plus cocaine fade group had daily intakes during the cocaine fade of 6.7-11.1 g/kg of 

ethanol; subsequent intake of ethanol alone was lower, but still pharmacologically relevant. 

Although the use of other drugs of abuse such as cocaine and barbiturates present additional 

confounds, these studies suggest that other positive reinforcers such as sucrose might be 

capable of initiating elevated responding that can be maintained by intravenous ethanol alone. 

Hyytiä et al. (1996) examined the possible role of genetics in the acquisition of 

responding for intravenous ethanol using the AA (Alko-Alcohol) and ANA (Alko, Non-

Alcohol) selectively bred lines of rats. AA rats were selectively bred for high oral ethanol intake 

while ANA rats were bred for low ethanol consumption. In this study, food restricted AA and 

ANA rats were not found to differ on either intake or break point for intravenous heroin self-
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administration. However, AA rats acquired responding for 1, 2, and 4 mg/kg/injection doses 

of intravenous ethanol (average intake of 0.04 g/kg during 3 hour sessions) while ANA did 

not acquire responding for intravenous ethanol. Although the AA and ANA lines were initially 

selected for oral ethanol consumption, the finding that AA but not ANA rats will acquire and 

maintain responding for a range of intravenous ethanol doses suggests a possible genetic 

contribution for responding for intravenous ethanol. Further work with rat lines selected for 

high ethanol consumption may assist in the development of a functional methodology by 

which rats will intravenous self administer ethanol. Interestingly though, session responding 

across all three doses for AA rats remained at a fixed level of total responding regardless of 

dose suggesting a possible confound (possibly aversion) that limits total responding for 

intravenous ethanol. 

Several rodent lines have been selectively bred for alcohol preference. The AA/ANA 

line was the first line of rats to be selectively bred for alcohol preference (Li, 1993). 

Subsequently, several additional rat lines have been developed for ethanol preference (P/NP, 

HAD/LAD, Sardinian sP/sNP, and University of Chile UChA/UChB lines). Use of these 

selectively bred lines allows for the assessment of potential genetic contributions to alcohol use 

and abuse. However, several key differences exist between these selectively bred lines. Of these 

lines, P rats show a pronounced alcohol deprivation effect (ADE) with subsequent escalation 

of ethanol consumption. As well, P rats exhibit a pronounced increase in ethanol consumption 

following foot-shock induced stress (Vengeliene, 2003). Both ADE and stress are thought to 

be components of escalated human alcohol consumption. Of these lines, P rats, developed 

here at Indiana University, serve as an excellent rodent model to assess the genetic 

contributions of why humans use and abuse alcohol. 



www.manaraa.com

 

 

12 

Overall, the previous studies using intravenous self administration of ethanol in rats 

suggest that it may be possible to maintain stable responding for pharmacologically significant 

levels of ethanol by increasing the ethanol concentration, unit dose, combining intravenous 

ethanol reinforcer administration pre-exposure with a substance known to increase 

responding, and using a rat line selected for high ethanol consumption. These parameters 

should lead to the development of a model by which rats will self-administer ethanol 

intravenously to a level that would allow for examination of pertinent questions regarding 

human alcohol consumption and abuse. 

 

Sucrose Fading 

The sucrose fading technique (Samson 1986) has been shown to facilitate acquisition of 

oral ethanol consumption in food- and water-sated rats. Initially demonstrated in the outbred 

Long Evans rat, sucrose fading uses a concentrated sucrose solution to initiate operant 

responding (typically between 10-20% sucrose). Once stable responding is acquired the 

sucrose is gradually removed while gradually increasing the ethanol content. Sucrose fading is 

usually accomplished over a period of several weeks and results in rats that willingly consume 

pharmacologically relevant levels of a 10-40% ethanol solution. Though originally used for oral 

ethanol consumption, it is likely that the sucrose fade technique could be used to facilitate 

intravenous self-administration of ethanol by providing an oral sucrose solution in conjunction 

with intravenous ethanol administration similar to the Ikegami cocaine fade technique. Our 

current findings support the use of this modified sucrose fading to assist with the initiation and 

maintenance of operant intravenous ethanol self-administration (see preliminary intravenous 

ethanol self-administration findings below). Notably, fading of the oral sucrose component 
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from 2% sucrose (2S) to either 1% sucrose (1S) or water still elicited reliable responding for 

the oral reinforcer complex. It was not possible, however, to characterize the precise role 

sucrose plays in this reinforcer complex due to the utilization of a single component schedule 

design. 

 

Use of Concurrent Schedules of Reinforcement 

Concurrent schedules of reinforcement are traditionally used to demonstrate allocation 

of responding between multiple reinforcers. This allocation of responding allows concurrent 

schedules to quantitatively assess choice or preference for a reinforcer compared with the 

other available reinforcers. This is to say, with concurrent schedules animals are able to 

demonstrate which reinforcer they prefer by increasing responding for it over the other 

available reinforcers. Generally, manipulations of reinforcer quality (by concentration or 

adulteration) and the schedule requirement (ratio or time interval) can further elucidate the 

relative preference across reinforcers. Difficulties arise with concurrent schedules when either 

side bias or insensitivity for reinforcer manipulation effect responding. If the reinforcers have 

roughly similar efficacy, rats may not sample both reinforcers equally. Instead the animals 

might only respond for the reinforcer they encounter first (typically due to an innate side 

preference) rather than demonstrating a preference between the reinforcers. Responding is 

maintained by only one of the reinforcers and precludes access to the alternate reinforcer due 

to a side bias. Concurrent schedules also assume that the animal is sensitive to changes in 

schedule and reinforcer quality. Heyman and Oldfather (1992) examined ethanol choice 

behavior in rats with access to sucrose (10S) and a sweetened ethanol solution (10S10E) both 

on variable interval (VI) schedules. Responding for the sweetened ethanol solution was shown 
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to not change as a function of changes in the VI schedule (inelastic responding). This 

reinforcer insensitivity could substantially confound determination of the reinforcing 

properties of individual components of a compound reinforcer. 

In addition to the side bias and reinforcer sensitivity, behavioral interactions across 

reinforcers have been noted with use of concurrent schedules. As animals demonstrate 

preference for session reinforcers, qualitative changes in one reinforcer will effect responding 

for all reinforcers. Manipulations of the schedule or concentration of one reinforcer tend to 

influence responding for the other reinforcers. Files et al. (1995) observed a negative 

behavioral contrast. Responding for a 2% sucrose plus 10% ethanol (2S10E) reinforcer 

declined when the alternate reinforcer concentration was increased from 2S to 5S. McSweeney 

et al. (1998) observed positive behavioral contrast for ethanol responding when the alternate 

food reinforcer was extinguished. Changes in responding for individual reinforcers due to 

manipulations of the alternate reinforcer generally require several sessions to allow responding 

to reach stable levels. Though traditional oral consumption studies can easily accommodate the 

additional sessions that concurrent schedules require following reinforcer manipulation, studies 

using intravenous administration are severely limited in study duration due to catheter patency 

concerns. Because of the side bias, possible reinforcer insensitivity, and behavioral contrast 

effects inherent to concurrent schedules, this method seems disadvantageous for use with 

intravenous self-administration of ethanol in rats. 

 

Use of Multiple Schedules of Reinforcement 

Multiple schedules of reinforcement with ethanol have been show to result in 

independent and stable responding for each individual component of the schedule (Slawecki 
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1997). During a multiple schedule session animals are allowed access to multiple reinforcers 

during discrete time intervals such that only one reinforcer or reinforcer complex is available 

during a given time interval. Reinforcer availability is switched in equal intervals across the 

session with each reinforcer paired with a specific response (typically a specific lever or nose-

poke). Such a design allows for the isolation and manipulation of each schedule without 

significant influence on the other schedule(s). Slawecki et al. (1997) demonstrated that with 

multiple schedules rats will maintain responding for both sucrose plus ethanol (5S10E) and 

sucrose (5S). Additionally, it was found that responding during the component maintained by 

each reinforcer was unaffected by manipulations of the sucrose and/or ethanol concentrations 

of the alternate reinforcer. Therefore, responding for each reinforcer was both stable and 

independent. As well, Czachowski et al. (1999) successfully achieved stable and independent 

responding for unsweetened ethanol (10E) and sucrose (5S) reinforcers using the multiple 

schedule design. Interestingly, unlike concurrent schedules, increasing the sucrose 

concentration, and therefore its reinforcing efficacy, did not result in a decrease in responding 

for ethanol.  

Multiple schedules have been shown to have independent and stable responding for 

multiple reinforcers during a single session. This stability and independence allows for easy 

manipulation of one reinforcer without affecting responding for another reinforcer, which 

significantly decreases the number of sessions required between reinforcer manipulations to 

reach stable responding. This decrease in total sessions required is of great benefit to studies 

using intravenous administration as catheter longevity limits the total study duration. Although 

all levers are extended into the chamber, only one lever is active during any given component. 

Responding for a preferential side would only result in reinforcement when that lever was 
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active. As animals progress across training such non-reinforced behavior is reduced as animals 

instead follow the active lever for access to each reinforcer. Therefore responding is less likely 

to be influenced by a side bias. Overall, multiple schedules allow for the study duration 

necessitated by catheter patency with intravenous administration studies while not allowing for 

side preference and sensitivity confounds. 

From the literature, it seems that a methodology by which rats will intravenously self 

administer ethanol to pharmacologically relevant levels is plausible. For acquisition and 

maintenance of responding, relatively high doses of ethanol (20-100 mg/kg/injection) seem to 

be necessary to that insure pharmacologically active exposures of ethanol occur during initial 

responding. To facilitate rapid onset of these effects without risk of cardiovascular damage, 

relatively elevated concentrations of ethanol should be used (15-30%). A positive reinforcer 

(i.e. sugar) should be used to facilitate initial acquisition of elevated responding but faded 

quickly to establish responding for ethanol alone. Use of selected rat lines bred for high 

ethanol consumption (i.e. ethanol preferring P rat) may utilize possible genetic contributions 

that underlie escalated ethanol consumption. Preliminary work (see below) utilizing each of 

these aspects appears to successfully result in pharmacologically relevant intravenous self 

administration of ethanol in the rat. However, the precise role of sucrose in the reinforcer 

complex used in these studies remains elusive.  

 

Preliminary Data 

Four male P rats were operantly conditioned to respond for access to an oral sucrose 

reinforcer (see methods section for further detail on training). In brief, lever pressing was 

trained first on an FR1 schedule for an oral 5% sucrose (5S) solution. Once stable responding 
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was achieved the response requirement was increased from a FR1 to a FR4 schedule across 

several sessions with the oral sucrose concentration subsequently diminished from 5S to 2S. 

Animals were then implanted with an indwelling jugular catheter (as described in methods 

section). After a five day recovery period, the animals were habituated to the intravenous 

administration procedure. For this habituation, animals were first attached to the infusion 

tether with no infusion during two orally reinforced sessions. Then normal saline (0.9% NaCl) 

infusions were coupled with the presentation of the oral sucrose reinforcer for four sessions. 

Finally, a reinforcer complex of 10 mg/kg/injection dose of intravenous ethanol (6% ethanol 

by volume) with oral 2S was presented for seven sessions to insure elevated stable responding 

for the intravenous ethanol plus oral sucrose compound reinforcer. Various manipulations of 

intravenous dose (10-25 mg/kg/injection), infusion duration (3-10 seconds), and ethanol (6-

30%)/sucrose (0-2%) concentrations were then performed. Blood alcohol concentrations were 

collected following an ethanol concentration manipulation session to verify pharmacologically 

relevant self administration levels. 

Preliminary data indicate that selectively bred alcohol preferring (P) rats will self-

administer a reinforcer complex of oral 2S plus intravenous ethanol of variable concentrations 

to pharmacologically significant levels. This was supported by blood alcohol concentration 

measurements taken directly following a 30-minute self-administration session every twenty 

minutes for a total of eighty minutes (Figure 1. blood alcohol concentration). Additionally, 

reducing the sucrose content in the oral portion of the reinforcer complex to either 1S or 

water resulted in no decrement in the initial trajectory of responding (Figures 2.1.-2.2. 

cumulative records). Interestingly, sucrose appears to predominately exert its influence on 

responding during the latter portion of the session resulting in a substantial increase in 
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responding for either of the sucrose conditions (1-2% sucrose) as compared to the oral water 

plus intravenous ethanol. From these data, it does not appear that sucrose is necessary for the 

initiation of lever responding as indicated by the similar initial slopes in responding across oral 

reinforcer types (2S, 1S, and 0S). Further characterization of the role of sucrose in this 

reinforcer complex is needed to elucidate the unique influence that the oral sucrose and 

intravenous ethanol have in this reinforcer complex for the selectively bred P rat. 

 

Research Question/Hypotheses 

In order to further characterize the precise role that sucrose and ethanol have in the 

reinforcing properties of the previously described oral sucrose and intravenous ethanol 

compound reinforcer, a two-lever choice multiple schedule study design was performed using 

the selectively bred alcohol preferring P rat. The initial hypothesis was that responding for the 

intravenous ethanol plus oral sucrose schedule would be more reinforcing than sucrose alone 

as demonstrated by a significant increase in responding during the intravenous ethanol plus 

oral sucrose schedule compared to responding for the oral sucrose only schedule. 
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METHOD 

 
 
 

Animals 

Eight alcohol preferring P rats (weighing 235 ± 9 g) were obtained from the Indiana 

University School of Medicine, Indianapolis, IN. Animals had ad libitum access to food and 

water throughout the study except as noted during the initial training phase. Animals were 

housed individually in a controlled environment with a 12-hour light/dark cycle (lights on at 

8:00 am). All procedures were performed in accordance with NIH guidelines for animal care 

and usage. 

 

Apparatus 

Rat operant conditioning chambers (Coulbourn Instruments, Lehigh Valley, PA, USA) 

contained within sound-attenuating chambers were used for daily sessions. The front and rear 

walls of the chamber were composed of Plexiglas with the side panels composed of aluminum. 

The right side panel contained the response panel. A sipper tube was located in the center of 

the right panel with a sensor to record lick data. Discrete dosing of fluid into the sipper tube 

was achieved by computer activation of a valve located on the exterior of the sound-

attenuating chamber. Retractable response levers were located on either side of the sipper with 

a multi-color (red, yellow, green) LED display located directly above each lever. A house light 

was located at the top right of the back wall. Intravenous reinforcers were delivered via a 

Coulbourn computer controllable infusion pump located outside of the chamber with the 



www.manaraa.com

 

 

20 

infusion line connected via a rotating swivel tether allowing for relatively unrestricted 

movement about the chamber. All session relevant input and output data were controlled and 

recorded on a Windows PC using Coulbourn Graphic State software. 

 

Procedure 

Initial Training 

Upon arrival, animals were allowed two days to acclimate to the animal facility. 

Following this, the animals were weighed and handled at least twice during the five days prior 

to the start of operant conditioning (see Figure 3. time table for multiple schedule training). 

Home cage water was removed 18 hours prior to the initiation of operant training with 

restricted water access during the subsequent five days to facilitate the initiation of lever press 

responding. Following initial training, animals had ad libitum access to both food and water for 

the remainder of the study. Operant lever press responding was established during four 1-hour 

long training sessions using an oral 5% sucrose (5S) solution on a fixed ratio one (FR1) 

schedule with shaping for increasingly appropriate responses during the first session. Animals 

unable to acquire lever responding within the first two sessions were given a twelve-hour 

overnight training session. For this portion of the training, only the sucrose lever was extended 

into the chamber and correct responding was reinforced with access to 0.1mL of a (5S) 

solution administered into the sipper tube. Sucrose lever side was alternated across animals to 

minimize the potential confound of a lever bias. Once lever responding was acquired, the 

animals then progressed incrementally over several sessions from a FR1 to a FR4 schedule. 

When animals were reliably responding under the FR4 schedule, a 7 second time-out (TO) 

period was added following reinforcer administration so that a consistent reinforcer duration 
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was established across all reinforcer types (i.e., when intravenous infusions are introduced 

which last 5 seconds followed by a 2 second time out, reinforcer access time can be equated). 

The sucrose component was then faded across several sessions to a final concentration of 1% 

sucrose (1S). 

To introduce the second lever, the animals were briefly trained to respond on the 

“other” lever for an oral 1S reinforcer on a FR1 schedule. For these sessions the previously 

paired sucrose lever was retracted. The schedule was then incrementally increased from a FR1 

to FR4 across several sessions. This completed training for sucrose reinforcement on both 

levers, and from this point on, one lever was associated with only oral reinforcers (“sucrose 

lever”) and the other with intravenous reinforcer plus oral reinforcer (“IV ethanol lever”). 

 

Surgical Procedure 

Once stable responding on a FR4 schedule was achieved for both levers, an indwelling 

jugular catheter was placed following standard catheterization surgery procedures (Manzardo 

2002) while animals were under pentobarbital anesthesia. Briefly, jugular catheters were 

constructed from Silastic® tubing (0.020 in I.D. x 0.037 in O.D., Dow Corning) cleansed with 

toluene then flushed with TDMAC to suppress clot formation at the catheter tip. Tubing was 

then attached to a 22-gauge guide cannula (Plastic One, Roanoke, VA) using 3-0 surgical 

suture silk and molded using dental cement with a one-inch square of Bard monofilament 

polypropylene mesh (Davol, Cranston, RI) attached to the dental cement. A one-cm square of 

Bard mesh was then attached 3 cm from the tip of the catheter to serve as an insertion 

indicator. In addition to the use of Bard mesh to expedite healing, both penicillin (0.2 mL IM 

Combi-Pen) and atropine (1.0 mg/kg subcutaneous) were administered prior to surgery. The 
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prepared catheter was inserted into the right jugular vein such that the tip was located just 

above the right atrium. The tubing was then passed subcutaneously over the shoulder to a 3 to 

4 cm midscapular incision. Threading of the catheter over the shoulder to the dorsal access 

point was facilitated by a 3-cm incision located 4-cm above the right hind leg so to diminish 

site damage and scar tissue formation around the catheter port. Incision sites were then 

sutured with non-dissolvable 4-0 surgical silk and treated with a topical antibiotic ointment. 

After surgery, catheter patency was facilitated by daily administration of a Heparin-Gentamicin 

maintenance flush. Patency was assured with weekly infusions of the fast acting barbiturate 

Brevital (1% methohexital sodium). Animals with either delayed or no response were removed 

from the study. Animals were allowed at least five days to recover from surgery prior to 

attachment of infusion tether. 

 

Acclimation to the Tether 

Following surgery, animals completed daily sessions responding for an oral 1S solution 

on the sucrose lever for seven sessions (see Figure 3. time table for multiple schedule training). 

During the final two sessions the animals were attached to the infusion tether without infusate 

administration to habituate the animals to the infusion related apparatus. Animals then had 

twice daily training sessions with only one of the levers extended into the chamber. During 

these sessions the stimulus light was introduced. The light above the extended active lever was 

illuminated serving as a discriminative stimulus. The green light was illuminated indicating 

active lever, green + yellow lights illuminated indicating reinforcer delivery, and green +yellow 

+ red lights illuminated indicating post-reinforcer time-out period. The morning session 

occurred within one hour of the onset of the light portion of the light/dark cycle (0700-0800) 
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and only the oral sucrose reinforcer lever was accessible. The evening session occurred within 

one hour of the initiation of the dark cycle (1900-2000) and only the IV lever was extended 

into the chamber. During the first two days of this period, the IV lever was paired with a 

reinforcer complex of intravenous normal saline (0.9% NaCl) and oral 1S solution. Following 

this, the IV lever was paired with a reinforcer complex of 25 mg/kg/injection dose of 

intravenous ethanol [20% v/v in half normal saline (0.45% NaCl)] with an oral 1S solution. 

 

Multiple Schedules Training 

Once responding stabilized on each lever, animals then began training on the multiple 

schedules. Daily 32-minute sessions were conducted with both levers available. A two-minute 

wait period occurred at the initiation of each session during which time both levers were 

retracted. Following the wait period, both levers were extended into the chamber and lever 

activation for reinforcer access alternated between the two reinforcer types on a fixed time 

interval. Progression to the subsequent reinforcer component was independent of responding 

during the individual components. The discriminative stimulus remained in effect with the 

light on above only the active lever. The initial active lever was alternated between sessions. 

The multiple schedule training started with 2 components, each 15 minutes in length, which 

progressively shortened over days to components of 7.5 minutes, 5 minutes, and finally 2.5-

minutes in length. Animals received two sessions at each component length with intravenous 

ethanol as the first schedule following each change. There was no effect on ethanol 

component responding noted as the component interval time shortened; therefore the 2.5-

minute component length was used for all subsequent testing. Criterion for stable responding 
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under the multiple schedules was set at less than 10 “incorrect” responses (responses on the 

inactive lever) during each component.  

 

Data Analysis 

Total responses for each schedule component were recorded. Total sucrose and 

intravenous infusate volumes were measured post session. Total daily ethanol intakes (g/kg) 

were calculated by dividing volume of infusate delivered by the measured body weight. 

Mean reinforcers and error responses for each schedule component were averaged 

across 2.5-minute multiple schedule sessions for ethanol first and sucrose first sessions. 

Average component reinforcers and error responding were analyzed using a two-way within-

subject repeated measures analysis of variance (ANOVA) with session and component as 

factors for within session data. Post hoc comparisons were performed using Student-

Newman-Keuls t tests (p< 0.05). 
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RESULTS 

 
 
 

One animal did not acclimate to the tether apparatus and was removed from the study. 

An additional animal lost patency prior to completion of acquiring the 2.5 minute multiple 

schedules and was removed from analysis. For the 6 remaining animals, the average weight at 

the end of the experiment was 416 ± 10 g. Average ethanol intake across sessions was 0.47 ± 

0.04 g/kg (range of 0.04-1.05 g/kg). Individual session data for reinforcers and error 

responding were plotted (see Figures 4.1.-4.2. Cumulative Record for reinforcers and error 

responding for Sucrose only first and Sucrose + Ethanol first sessions). Two-way repeated 

measures (RM) ANOVAs (day X reinforcer type) found no significant main effect for total 

session reinforcers over days [Ethanol first F(6, 12)=1.046, p=0.444), sucrose first F(5, 

5)=0.25, p=0.18] or total error responding over days [Ethanol first F(6, 12)=0.782, p=0.60), 

sucrose first F(5, 5)=1.157, p=0.44]. Therefore, for subsequent analysis, data were averaged 

across days for each component and session type (sucrose only first or sucrose plus 

intravenous ethanol first).  

Average total session correct responding on the sucrose only lever was 64.4 ± 31.3 

(mean ± SEM) when sucrose alone was the first component and 54.7 ± 25.0 when sucrose + 

IV ethanol was the first component. Average total session correct responding on the sucrose + 

IV ethanol lever was 30.3 ± 14.1 when sucrose alone was the first component and 40.3 ± 17.4 

when sucrose + IV ethanol was the first component (see Figure 5.1. Average Total Session 

Correct Responding). The average total session error responding (i.e. responding on the 
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inactive lever) for the sucrose only lever was 40.2 ± 14.0 when sucrose alone was the first 

component and 54.0 ± 17.3 when sucrose + IV ethanol was the first component. Average 

total session error responding on the sucrose + IV ethanol lever was 20.7 ± 7.8 when sucrose 

alone was the first component and 21.0 ± 8.6 when sucrose + IV ethanol was the first 

component (see Figure 5.2. Average Total Session Error Responding).  

 

Analysis of Correct Responding 

No significant difference in correct responding was shown for session type (first 

component being either sucrose only or sucrose + IV ethanol) [F(1, 55)=3.339, p=0.127]. A 

significant main effect of order was observed across components for correct responses [F(11, 

55)=12.109, p<0.001)] (see Figure 6. average reinforcers across components). As well, a 

significant interaction of session type and component was observed [F(11, 55)=13.07, 

p<0.001]. Post-hoc Student-Newman-Keuls pair wise comparisons for reinforcers revealed a 

significant increase in correct responding on the sucrose only lever when sucrose alone is the 

first component (1st component versus 3rd component p<0.001). A significant increase in 

correct responding on the sucrose lever as compared with correct responding on the ethanol 

lever was observed for the first seven components [with the exception of the fourth 

component] when compared between session types.  

 

Analysis of Error Responding 

No significant difference in error responding was shown between session type (first 

component being sucrose only or sucrose + IV ethanol) [F(1, 55)=0.573, p=0.483]. A 

significant main effect of order was observed across components for error responses [F(11, 
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55)=4.881, p<0.001)] (see Figure 7. average error responding across components). As well, a 

significant interaction of session type and component was observed [F(11, 55)=5.547, 

p<0.001]. Post-hoc Student-Newman-Keuls pair wise comparisons for error responding 

revealed a significantly greater in error responding on the sucrose lever compared with the 

ethanol lever for the first six components when compared between session types.  
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DISCUSSION 

 
 
 

Lever responding was stable across sessions for both sucrose and sucrose plus 

intravenous ethanol. A statistically significant increase was observed for both correct sucrose 

lever responding (as demonstrated by reinforcers) during sucrose components and error 

responding on the sucrose lever during sucrose + IV ethanol components when compared 

between session types. Although the use of multiple schedules for the study precludes a 

direct analysis of animal “preference” for the individual reinforcers, the increased error 

responding on the sucrose lever suggests that despite oral sucrose being available during the 

sucrose + IV ethanol components the animals persist in responding for access to sucrose 

only. This suggests either a partial acquisition of the multiple schedules response 

requirements or a “preference” for the sucrose only reinforcer. Although it is possible that 

the animals did not completely acquire the response requirements for the multiple schedule 

(due in part to use of a highly visually specific light cues to indicate active lever and lever 

retraction post surgery), the prolonged stability in responding across sessions suggests that 

animals acquired proper responding for both components of the multiple schedules. As well, 

error responding on the ethanol lever was below the ceiling criteria for stable responding (i.e. 

less than 10 error responses per component). Though incomplete acquisition of responding 

for the multiple schedules cannot be completely ruled out, the error responding appears 

more likely an indication of a degree of “preference” for sucrose alone over the sucrose plus 

intravenous ethanol. 
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Since the same sucrose concentration is available with both schedules, variations in 

responding should reflect the role of intravenous ethanol as a reinforcer. If responding 

during the IV components remained equal to the response rate of the sucrose only 

components then intravenous ethanol is neither reinforcing nor punishing. If responding 

during the IV components increased, intravenous ethanol would be shown to have positive 

reinforcing qualities. However, if responding during the IV components decreased, 

intravenous ethanol would be shown to have aversive or punishing qualities. Interestingly, 

when intravenous ethanol was the first component, responding on the IV lever was only 

marginally decreased. However, when sucrose was the first component intravenous ethanol 

responding was substantially lowered (see Figures 8.1.-8.2. Average session reinforcers across 

components for ethanol and sucrose first sessions). One possible explanation for this 

difference is that the infusate cooled during the initial sucrose session. This reduction in 

infusate temperature could have resulted in pain during infusion beyond that which normally 

occurred with ethanol infusion resulting in lower responding for the intravenous ethanol 

schedule across sucrose first sessions. Taken as a whole, these findings (increased sucrose 

lever responding, sucrose lever error responding, and increased first component responding 

for sucrose) suggest that the intravenous administration of ethanol is aversive particularly 

when sucrose was the first component. The responding observed during this study 

resembles responding typically observed during conflict or punishment testing.  

 

Testing Conflict/Punishment 

Conflict or punishment testing examines anxiety involved when crossed or opposing 

motivations are presented concurrently (Commissaris 1992). This is to say, conflict testing 
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examines responding for a reinforcer with both positive qualities (e.g. food or drug) and 

simultaneously aversive qualities (e.g. foot shock or noxious odor). Conflict arises as the 

positive reinforcer increasing the likelihood of responding while paradoxically the aversive 

stimulus decreases the likelihood of responding. Conflict testing is readily demonstrated by 

allowing a food restricted animal to respond for access to a compound reinforcer of food 

plus foot shock. The animal is motivated to access and consume the food while also 

motivated to avoid the foot shock, thus resulting in conflict. When responding is maintained 

by access to a positive reinforcer, adding punishment produces a decrease in overall 

responding for the schedule (Domjan 2003). One of the first theories on punishment, 

Conditioned Emotional Response (CER), was proposed by Estes in 1944. CER is based 

upon the observation that when a stimulus previously conditioned (CS) with operant lever 

responding to acquire food reinforcer is paired with a foot shock (punishment) a decrease in 

responding of food-reinforced behavior will occur in the presence of the CS. Which is to 

say, the acquisition of fear to the CS results in the disruption of the food reinforced lever 

responding. As animals in the current study had stable intravenous ethanol responding that 

was relatively close to the responding for sucrose, a substantial CER does not appear to be 

occurring. 

Another way to examine punishment is the Geller-Seifter conflict paradigm. Originally 

proposed by Geller and Seifter (1960), the Geller-Seifter paradigm uses food deprived 

animals responding during multiple schedules for non-punished and punished (via foot 

shock) access of a food reinforcer. A substantial drop in responding during the punished 

component is observed while elevated responding during the unpunished component is 
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maintained. Use of the multiple schedules design allows for the examination of response 

rates during the separate components typically with drug manipulation.  

Koob et al. (1987) used a modified Geller-Seifter paradigm to examine the effects of 

intraperitoneal administration of ethanol (0.75 g/kg IP) across several sessions. The IP dose 

used by Koob is slightly higher than the average intravenous ethanol intake observed with 

the animals in the present study (0.47 g/kg). Ethanol was found to produce a substantial 

“anxiolytic” effect (by increasing the rate of punished responding from baseline) but this was 

found to undergo rapid tolerance resulting in a return of punished responding to baseline 

levels within several sessions of ethanol administration. Ethanol was shown to also have a 

sedative action in the rats shown by a decrease in the rate of unpunished responding. Rats 

were slower to develop tolerance for this sedative effect of ethanol. Similarly, Baldwin et al. 

(1991) used a modified Geller-Seifter conflict test to examine the anxiolytic and sedative 

effects of various doses (0.25, 0.5, 0.75, and 1.0 g/kg) of IP ethanol on Wistar, P, and NP 

rats. P rats were found to be less sensitive to the anxiolytic effects of ethanol (increasing 

punished responding following only the higher 0.75 and 1.0 g/kg doses) than NP (sensitive 

to the anxiolytic effect at all ethanol doses) or Wistar rats (initial response at 0.5 g/kg dose). 

Sedative effects were significantly noticed with decreases in unpunished responding at all 

ethanol doses for NP rats while both P and Wistar did not decrease unpunished responding 

until the 0.75 g/kg dose. P rats appear to be less sensitive to both the anxiolytic and sedative 

effects of ethanol compared with both NP and Wistar. Together these findings suggest that 

P rats tend to be less sensitive to the anxiolytic effects of ethanol and these effects quickly 

undergo rapid tolerance. Therefore, although administration of higher quantities of ethanol 

could potentially counteract the aversive qualities of intravenous ethanol administration, with 
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chronic administration a tolerance to these anxiolytic properties quickly develops and several 

administrations must be endured prior to the onset of anxiolytic relief from ethanol. 

Grupp and Stewart (1983b) sought to specifically examine the aversive properties of 

intravenously administered ethanol. Active avoidance of intravenous ethanol exposure was 

investigated using a shuttle jump response. Wistar rats were training to jump over a hurdle 

set to variable heights to avoid receiving an intravenous infusion of ethanol. Grupp and 

Stewart demonstrated that rats will actively avoid exposure to intravenously administered 

ethanol doses of 0.2, 0.4, and 0.8 g/kg while the saline control group did not acquire jump 

response. As well, they examined if rats would actively self administer intravenous ethanol 

using a runway experiment. Animals were trained to traversed the runway and enter the goal 

box. Upon goal box entry, animals received a 30-second infusion of either saline or ethanol. 

It was found that for all ethanol doses rats would passively avoid intravenous ethanol 

exposure by not entering the goal box after several trials. This active and passive avoidance 

to intravenous ethanol administration suggests that intravenous ethanol acts as a punisher in 

rats.  

McKearney (1968) demonstrated that animals would willingly self-administer electrical 

shock. In this study squirrel monkeys were initially trained using a shock-postponement 

schedule. For this schedule, shocks were programmed to occur every 10 seconds, however, 

each response postponed shock presentation for 30 seconds. Once robust responding under 

this schedule was achieved, an additional schedule was added concurrent to the shock-

postponement schedule in which responding after 10 minutes resulted in shock presentation 

(FI 10-minute schedule). When the shock-postponement schedule was removed, the animals 

maintained responding for the FI-10 minute shock. Grupp and Perlanski (1983a) found that 
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the same experimental design that engenders responding for shock presentation is not 

successful in establishing intravenous self administration of ethanol for 200 and 400 

mg/kg/injection doses. These findings suggest that intravenous ethanol is aversive. 

 Though the animals in the current study were not food deprived, the perseveration on 

the sucrose lever during a sucrose + intravenous ethanol suggests a conflict of wanting the 

oral sucrose reinforcement without the administration of intravenous ethanol. This is also 

demonstrated by the increase in first component sucrose responding when sucrose only is 

the first reinforcer. If intravenous ethanol administration is aversive, it is probable that the 

pharmacologically significant intake of ethanol observed in this study was due to the sucrose 

portion of the IV ethanol plus sucrose compound reinforcer rather than the ethanol. 

However, if sucrose alone were driving responding one would expect food and water sated 

animals to extinguish responding during the intravenous ethanol component and shift 

responding to the non-aversive sucrose only component. Such extinction of intravenous 

ethanol responding was not observed. All animals maintained stable, though decremented, 

responding during the intravenous ethanol components.  

It is possible that the increased responding for sucrose during the first component is 

because of a qualitative difference in the reinforcers due to a novel taste component relevant 

to intravenous ethanol administration. A tiny portion of the ethanol administered is expired 

during normal respiration. Though small, this quantity of ethanol is theoretically detectable 

by the animal as a distinct taste and/or smell. It is therefore plausible that the orally 

consumed sucrose is qualitatively different following the first ethanol component. This 

qualitative difference in oral sucrose explains the observed increase in responding for 

sucrose when sucrose during the first component. This qualitative difference in sucrose 
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following ethanol administration does not, however, explain the elevated error responding 

on the sucrose lever observed across the session. 

 

Implications 

This study demonstrates that the current method of intravenous self administration of 

ethanol using a compound reinforcer of 1% oral sucrose plus 20% intravenous ethanol 

remains aversive in the rat. The data suggest that the animals were primarily responding for 

access to the oral sucrose component rather than access to either the intravenous ethanol or 

reinforcer complex. The data show a decrease in responding for intravenous ethanol 

suggesting that the intravenous ethanol is punishing or a qualitative difference exists between 

the oral reinforcers for the two schedules. A method by which rats will self administer 

pharmacologically relevant levels of ethanol with responding driven the reinforcing effects of 

ethanol remains elusive. This is due to in part or whole to the punishing qualities of 

intravenous ethanol administration. 

 

Future Directions 

Responding for the compound reinforcer was shown to be driven primarily by the 

sucrose component of the reinforcer complex with the potential of lingering aversive effect of 

intravenous ethanol administration. Further work attempting to establish a viable method by 

which rats with self administer pharmacologically relevant levels of ethanol must address these 

aversive effects as well as demonstrate a preference for intravenous ethanol. Use of a sucrose 

fade after surgery, similar to the cocaine fade used by Ikegami, may help bridge the gap 

between the aversive and reinforcing effects of intravenous ethanol. As well, warming the 
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infusate across the entire length of the tether apparatus might decrease a possible pain 

response to intravenous ethanol administration. Findings from the preliminary studies 

demonstrated a substantial increase in responding for intravenously administered ethanol when 

the infusate solution was warmed prior to the start of the session. At the present time, no 

methodology of intravenous ethanol self administration in rats achieves pharmacologically 

relevant levels of ethanol exposure that is primarily driven by responding specific for the 

intravenous administered ethanol. 
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Table 1 
Previous Rat Studies Using Intravenous Ethanol Self-Administration 

Citation 
strain of 

rat deprivation 
concentration 
EtOH infusate 

dose 
(mg/kg/infusion) intake (g/kg) 

length of 
session 

volume infused 
(mL) 

length of 
infusion 

estimated 
BAC 

DeNoble, 
1985 

Long-
Evans Food 20% 

1, 3, 10, 30, 60, 90, 180, 
360 1.65 24 hour 0.2 4 sec not stated 

Gass, 2007 Wistar Food 1% 1 0.02 1 hour 0.03 1 sec not stated 

Grupp, 
1983a Wistar Food 10-25% 200, 400 2.4 75 minute not stated not stated not stated 

Grupp, 
1983b Wistar 

Active no; 
Passive yes 10-40% 200, 400, 800 0.2 - 0.8 

single 
exposure 

0.2mL/100g 
body weight 90 sec not stated 

Hyytiä, 
1996 AA, ANA Food 0.5-2% 1.0, 2.0, 4.0 AA= 0.04, ANA=0.015 3 hour 0.1 4 sec not stated 

Ikegami, 
2002 

Sprague-
Dawley no 10% 

125 (training), 62.5, 
125, 250, 500 

6.7-11.1 training  (EtOH + 
cocaine); 0.5-2.0 (EtOH alone) 1 hour variable not stated 

44-221 
mg/dL 

Lyness, 
1992 

Sprague-
Dawley no 0.5-4.0% 0.5, 1, 2, 4, 8 0.15 8 hour  ~0.06 (calculated) not stated not stated 

Numan, 
1981 

Long-
Evans no 20% 

avg 0.093  
(range 0.08-0.11) 10.43 24 hour 0.2 1 sec not stated 

Oei, 1979 Wistar Food 19.90% 8 
0.2 (food dep),  

0.5 (food dep + FT1) 1 hour 0.07 5 sec not stated 

Sinden, 
1982 Wistar no 1.50% 0.5, 1.0, 5.0 

0.024 (0.5 mg/kg/dose), 0.0625 
(1.0 mg/kg dose), 0.0115 (5.0 

mg/kg/dose) 24 hour 0.1 3 sec not stated 

Smith, 
1974 Holtzman no 0.25% 0.12 .048 (highest) 12 hour 0.018 0.2 sec not stated 
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Figure 1. Blood alcohol concentrations. Tail blood samples collected every 20 minutes 

following a 30-minute self-administration session with animals responding for a reinforcer 

complex of oral 2S and varied IV ethanol concentrations.  
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Figure 2.1. Cumulative Record Data for IV8. Lever responding during 30-minute sessions for 

access to a 20% intraveous ethanol (25 mg/kg/dose) plus varying oral sucrose concentration 

(2S, 1S, and water). 

 

 

 

Figure 2.2. Cumulative Record Data for IV7. Lever responding during 30-minute sessions for 

access to a 20% intraveous ethanol (25 mg/kg/dose) plus varying oral sucrose concentration 

(2S, 1S, and water). 
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Figure 3. Time Table for Multiple Schedule Training. 
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Figure 4.1. Cumulative Record Sucrose Only First Component for IV15. Green equals sucrose 

reinforcers administered while orange is intravenous ethanol reinforcers. The green “X” 

symbols designate error responding on the sucrose only lever while the orange “+” symbols 

designate error responding on the intravenous ethanol lever. Shading across x-axis indicates 

progression to next component. For this animal, total ethanol intake during this session was 

approximately 1.0 g/kg. The animal emitted a high rate of error responses on the sucrose only 

lever across the session, while error responding on the intravenous ethanol lever was restricted 

to the time around each component transition. 
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Figure 4.2. Cumulative Record IV Ethanol Plus Sucrose First Component for IV15. Green 

equals sucrose reinforcers administered while orange is intravenous ethanol reinforcers. The 

green “X” symbols designate error responding on the sucrose only lever while the orange “+” 

symbols designate error responding on the intravenous ethanol lever. Shading across x-axis 

indicates progression to next component. For this animal, total ethanol intake during this 

session was approximately 0.9 g/kg. The animal emitted a less error responses on the sucrose 

only lever across the session [compared with sucrose first session (Figure 4.1.)]. Error 

responding on the intravenous ethanol lever was relatively restricted to the time around each 

component transition with an increase in intravenous ethanol error responding compared with 

the sucrose first session (Figure 4.1.). 
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Figure 5.1. Average Total Session Correct Responding. Green is correct responding on the 

sucrose only lever, while orange is correct responding on the intravenous ethanol lever. On the 

left are the data for the sucrose first sessions while the data for ethanol first sessions is on the 

right. No statistically significant difference was noted with correct responding for either 

session type or component type. 
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Figure 5.2. Average Total Session Error Responding. Green is error responding on the sucrose 

only lever, while orange is error responding on the intravenous ethanol lever. On the left are 

the data for the sucrose first sessions while the data for ethanol first sessions is on the right. 

No statistically significant difference was noted for error responding for either session type or 

component type. 
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Figure 6. Reinforcers Administration for Sucrose and IV Ethanol Sessions. The primary color 

indicates session type (green for sucrose, orange for ethanol). The left column of each 

component is sucrose reinforcers, while the right column is ethanol reinforcers (with minor 

shading indicating reinforcer type where necessary). As significant increase (p< 0.05) in sucrose 

reinforcers is noted for the first seven components (except for component 4). 
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Figure 7. Error Responding for Sucrose and IV Ethanol Sessions. The primary color indicates 

session type (green for sucrose, orange for ethanol). The left column of each component is 

sucrose error responding, while the right column is ethanol error responding (with minor 

shading indicating reinforcer type where necessary). As significant increase (p< 0.05) in sucrose 

error responding is noted for the first six components. 
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Figure 8.1. Reinforcers Intravenous Ethanol First Sessions. Green is sucrose reinforcers; while 

orange is intravenous ethanol reinforcers. A significant difference is noted between the first 

ethanol component and the subsequent ethanol component indicating a substantial drop in 

responding between the first and second ethanol schedule components. 
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Figure 8.2. Reinforcers Sucrose First Sessions. Green is sucrose reinforcers; while orange is 

intravenous ethanol reinforcers. A significant difference is noted between the first ethanol 

component and the first and second sucrose components. 
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